
S− LIFETIME 
TEACHER NOTES 

 
This activity gives students an opportunity to measure the mean lifetime of a particle that 
lasts long enough to travel a measurable distance in a bubble chamber. It shows the 
probabilistic nature of particle lifetimes and a typical lifetime of a weakly decaying particle. 
Particles that decay through the electromagnetic or strong interactions don’t travel a 
measurable distance before decaying. Their lifetimes must be calculated with the 
Heisenberg uncertainty relation ΔEΔt ≥ h/4π and their measured energy spread ΔE. 
 
STUDENT LEARNING OBJECTIVES 

1. Lifetime of moving particles is related to track length in a bubble chamber. 
2. Particle decay is a random process, and mean particle lifetime can be measured. 
3. Greater numbers of measurements of a random process yield greater precision of 

the mean value of the process. 
 
ESSENTIAL KNOWLEDGE  

1. Familiarity with relations between relativistic energy, mass, momentum, kinetic 
energy, and speed of a particle 

2. Acquaintance with exponential function and natural logarithms 
3. Familiarity with curve fitting on a calculator or computer spread sheet 

 
The Teacher’s Solution below contains typical measured valued and calculations printed in 
bold-faced type. 
 
(Meets LO 1 with values provided in Table 2 as it relates to track length-lifetime relations for a particle) 
(Meets LO 2 as it relate to measurement of particle track length) 
(Meets LO 3 as it relate to calculation of uncertainty related to number of measurements) 
 
 



TEACHER’S SOLUTION 
Most of the particles discovered during the 20th century are unstable and spontaneously 
decay with very short mean lifetimes into less massive particles. Our goal here is to 
determine the lifetime of one such particle, the Σ− particle. To produce the Σ− particles 
whose tracks are shown in Figures 1 and 2, high-energy protons from the CERN Proton 
Synchrotron crashed into a stationary target. Among the particles produced were negative 
kaons (K-). These kaons were then selected and directed to the Saclay 80-cm bubble 
chamber. Many of the kaons incident on the chamber had low enough energy that they 
stopped before interacting with protons in the chamber. In the photos in Figures 1 and 2 a 
negative kaon (K-) entered from the bottom and left a trail of ions around which hydrogen 
bubbles formed. The K− came to rest and interacted with a proton (also essentially at rest) 
from the liquid hydrogen. The photos show production of a Σ− and a π+, one of several 
possible results of the kaon-proton interaction. 
 
Explain why you expect the Σ− and π+ to have equal and opposite momenta. 

The kaon and proton is at rest before the interaction had zero total 
momentum. Total momentum after interaction must be zero (momentum 
conservation). Thus, the two particles resulting from the interaction must 
have equal and opposite momenta:  pK + pp = 0 = pS + pp  ⇒ 
 pS = - pp 

 
Use energy conservation to show that Σ− and π+ momentum must each be 173 MeV. 
        Energy conservation:  mK + mp = ES + Ep 
 
           493.7 MeV + 938.3 MeV = 2222 )()140()()1197( pMeVpMeV +++  
 
        1432 MeV - 2222 )140()1197( pMeVpMeV +=+  
 
 Square both sides of the equation and solve for p. 
     · 
     · 
     · 
  p = pS = pp = 173 MeV 
 
Calculate the energy, kinetic energy, and speed of the Σ− when it is produced. 
 
  222

ΣΣΣ += pmE   =  (1197 MeV)2 + (173 MeV)2 ⇒   ES = 1209 MeV 
 
  KES = ES – mS  =  (1209 MeV – 1197 MeV) ⇒ KES = 12 MeV 
 
        vS = pS/ES  =  (173 MeV)/(1209 MeV) ⇒     vS = 0.143 
 
Calculate the energy, kinetic energy, and speed of the π+ when it is produced. 
 222

πππ pmE +=   =  (140 MeV)2 + (173 MeV)2 ⇒   Eπ = 223 MeV 
 



  KEπ = Eπ – mπ  =  (223 MeV – 140 MeV)  ⇒ KEπ = 83 MeV 
 
         vπ = pπ/Eπ  =  (173 MeV)/(223 MeV)  ⇒     vp = 0.776 
 
The π+ and the Σ− are unstable particles. About 99.99% of all positive pions decay into a 
positive muon and a muon neutrino (π+ →µ+ + νµ). The pion mean lifetime is  
τπ = 2.60 x 10-8 s. About 99.85% of all Σ− particles decay into a neutron and a negative pion 
(Σ− → n0 + π−). In this exercise you will measure the Σ− mean lifetime (τΣ−). 
 
Particle decay seems to be a random process like flipping coins or rolling dice. Imagine a 
large collection of N coins. All coins are flipped at once, and after the flip each coin that 
shows heads is removed from the collection. The remaining coins are flipped again, and 
the process of removing coins that show heads is repeated. As this process continues, the 
number of coins remaining decreases, and the number that show heads after each flip 
decreases roughly in the same proportion. For a single coin, the outcome of any one flip 
(heads or tails) is not easily predicted. However, for a large number of flips of a fair coin or 
one flip of a large number of fair coins nearly half of the coins flipped will produce heads 
and nearly half will produce tails. When starting with a large number of coins (N0), we 
expect that half the coins after any flip will show heads and be removed. We can represent 
the number of coins (N) remaining after a number of flips (n) by  
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Suppose you have a large collection of N0 fair 6-sided dice. After each shake of the 
dice, those showing one spot on the top face are removed.  
Write an expression for the number (N) of dice remaining after n shakes.  
Calculate the value of the decay constant λ. 
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We assume a random process of the type indicated above represents particle decay. In 
this model for unstable particles, a constant fraction of the particles present at any time 
(ΔN/N) will decay and be removed from the collection during some specified time interval 
Δt, i.e., (ΔN/N)/Δt = λ = decay constant. The value of λ depends on the nature of the 
particle. For a system starting with N0 particles at time t = 0, the number of particles 
remaining at any later time is given by the expression 
 

τλ /
00

tt eNeNN −− == , where 1/λ = τ = mean lifetime. 
 

By measuring (ΔN/N)/Δt = λ several times for a random collection of one type of particle, 
one can determine an average value for λ and, consequently, an average value for τ, the 
mean lifetime of the particle. That is the goal of this exercise.  



 
Figure 1: Photo (tracks twice actual linear size) from film of a Stopping K- run at CERN in the 
Saclay 80-cm Hydrogen Bubble Chamber. Adapted from H. Whiteside, Elementary Particles, 1971, 
photo from of the University of Maryland High Energy Physics Group. 
 
Notes: Photo on left is analyzed in the Inelastic Scattering exercise. 
The S- in the photo on the right slows to a stop, interacts with a proton and produces neutral 
particles that leave no tracks. 



 
Figure 2: Segments of nine photos (tracks twice actual linear size) from film of a Stopping K- run at 
CERN in the Saclay 80-cm Hydrogen Bubble Chamber. (From H. Whiteside, Elementary Particles, 
1971.) Circled S- interaction in bottom center is displayed in bottom right photo. 

 



The photos in Figures 1 and 2 present a small random selection from a large 
collection of images of the interaction K- + p+ → Σ− + π+ in the Saclay 80-cm liquid 
hydrogen bubble chamber at twice its actual size; i.e., 2 cm on photo represents 1 cm 
on bubble chamber surface. A nearly uniform magnetic field was directed toward the 
viewer perpendicular to the plane of the photo. The strong magnetic field (B = 1.7 tesla) 
produced curvature in the tracks of charged particles moving in the photo plane. In most 
cases, the Σ− decays in flight by the process Σ− → n0 + π−. The Σ− will occasionally last long 
enough to lose all its kinetic energy by ionizing hydrogen atoms along its path in the 
chamber. (The path length will be about one centimeter in the chamber (2 cm in the 
photos) for Σ− particles with initial momentum p = 173 MeV.) When that happens, the Σ− can 
interact with a stationary proton to form neutral particles that leave no tracks. 
 
Identify the Σ− tracks in Figures 1 and 2 and measure their lengths (LM) to the nearest 
mm. Record the values in the table below. 
 

Table 1. LM Measured Σ− Track Lengths (mm) 
Fig. 1 
Left 

Fig. 1  
Right 

Fig. 2  
Upper Left 

Fig. 2  
Upper Center 

Fig. 2  
Upper Right 

9 22 4 16 8 

 
Fig. 2 
Center  

Left 

Fig. 2 
Center 
Center 

Fig. 2 
Center 
Right 

Fig. 2  
Lower 
Left 

Fig. 2  
Lower          
Center 

Fig. 2  
Lower 
 Right 

4 2 7 10 14 3 

 
The process by which a moving charged particle slows down while ionizing hydrogen 
atoms in a liquid hydrogen bubble chamber is well studied. As a particle loses energy (and 
momentum), its speed decreases. It spends more time in the vicinity of each H atom along 
its path and produces more H ions. Thus, ion density and energy loss rate and time per 
mm of track length increase as the particle moves along. For S- particles with initial 
momentum of 173 MeV, this relation is embodied in the values for times of flight 
corresponding to various track lengths listed in Table 1. 
 
The track lengths that you measure in the photos are not likely to be the true track lengths 
in the bubble chamber since the true tracks are not likely to be in the plane of the photos. 
The S- tracks are more likely to be formed at some dip angle (θ) to the photo plane. Then 
the true track length (LT) is related to the measured track length (LM) by the expressions  
 
   LM  = LTcosθ   and   LT  = LM/cosθ . 
 
Since we don’t have values for the dip angle for each S- track, we will adjust each LM value 
by dividing it by 2 to compensate for the magnified scale of the photos and dividing by the 
average value of cosθ. This should be a reasonable correction to convert LM values to LT 
values. In three dimensions, the average value of cosθ is π/4.  



Thus, LT = (LM /2)/( π/4 ) = (2/π)LM = 0.637LM . 
 

Table 2. Time of Flight Related to Track Length for S- Particles with  
 Initial Momentum of 173 MeV 

 
LM Bin  
(mm) 

 
LT Avg. 
(mm) 

Bin Start 
Time  

(10-10 s) 

Bin End 
Time  

(10-10 s) 

Bin  
Δt  

(10-10 s) 

Ni  
S- at Bin 

Start 

ΔNi  
S- Decays 

in Bin 
  0.5 –   1.5 0.3 – 1.0 0.08 0.23 0.15 11 0 
  1.5 –   2.5 1.0 – 1.6 0.23 0.38 0.15 11 1 
  2.5 –   3.5 1.6 – 2.2 0.38 0.53 0.15 10 1 
  3.5 –   4.5 2.2 – 2.9 0.53 0.69 0.16 9 2 
  4.5 –   5.5 2.9 – 3.5 0.69 0.85 0.16 7 0 
  5.5 –   6.5 3.5 – 4.2 0.85 1.02 0.17 7 0 
  6.5 –   7.5 4.2 – 4.8 1.02 1.19 0.17 7 1 
  7.5 –   8.5 4.8 – 5.4 1.19 1.36 0.17 6 1 
  8.5 –   9.5 5.4 – 6.1 1.36 1.54 0.18 5 1 
  9.5 – 10.5 6.1 – 6.7 1.54 1.73 0.19 4 1 
10.5 – 11.5 6.7 – 7.4 1.73 1.94 0.21 3 0 
11.5 – 12.5 7.4 – 8.0 1.94 2.16 0.22 3 0 
12.5 – 13.5 8.0 – 8.6 2.16 2.39 0.23 3 0 
13.5 – 14.5 8.6 – 9.3 2.39 2.65 0.26 3 1 
14.5 – 15.5 9.3 – 9.9 2.65 2.95 0.30 2 0 

 
From your record of measured track lengths (LM) in Table 1, enter the number of decays in 
each bin (ΔNi) in Table 2. Then calculate and enter the Ni values for each bin.  
 
Next, calculate from Table 2 and enter in Table 3 below the decay constant λi for each bin 
(i) from LM = 2 mm to LM = 15 mm  λi = (ΔNi/Ni)/Δti . 
 
Track lengths less than 2 mm are omitted from the calculation because such short tracks 
are difficult to identify with reliability. For tracks longer than 15 mm, the S- particle is likely 
to have come to rest and interact with a proton before decaying so those track lengths are 
not representative of decay times. Thus, tracks longer than 15 mm are also omitted from 
the calculation. Some of the λi values will be zero. 
 
Calculate the average λi value. Include the zero λi values in your average. 
 
    Average λ = λav =        0.59 x 1010 s-1       
 
Calculate the mean lifetime (τ) for the S- particle and the approximate precision of the 
measurement nτ  , where n = number of decays included in the calculation of τ. 
 
  Mean lifetime τ = 1/λav =      1.71 x 10-10 s      ±  nτ  =      0.54 x 10-10 s 
 
 
 



Table 3. Decay Constants for Each Bin 
LM Bin    (mm) λi = (ΔNi/Ni)/Δti    (1010 s-1) 

1.5 –   2.5 0.61 
2.5 –   3.5 0.67 
3.5 –   4.5 1.39 
4.5 –   5.5 0 
5.5 –   6.5 0 
6.5 –   7.5 0.84 
7.5 –   8.5 0.98 
8.5 –   9.5 1.11 
9.5 – 10.5 1.32 

10.5 – 11.5 0 
11.5 – 12.5 0 
12.5 – 13.5 0 
13.5 – 14.5 1.28 
14.5 – 15.5 0 

 
Finally, plot Ni vs. t for LM values of 2 mm to 15 mm. Fit an exponential curve to the data, 
and compare λ and τ values from the fit to your calculated λav and τ values and to 
standard λ  and τ values. 
 
Calculated:    λav = 0.59 x 1010 s-1  τ = (1.71 ± 0.54) x 10-10 s 

NOTE:   
0 0    

/      
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Fit (for Ni0 = 11):  λ    = 0.61 x 1010 s-1  τ =  1.64 x 10-10 s 

 

Fit (for Ni0 and λ):  λ    = 0.69 x 1010 s-1  τ =  1.46 x 10-10 s 

 

Standard:   λ    = 0.676 x 1010 s-1  τ  = (1.479 ± 0.011) x 10-10 s 
 
 
 
 
 
 
 



S- Lifetime  
Bin Start Time     Ni S- 
(10-10 s) at Bin Start 
0.00 11 
0.23 11 
0.38 10 
0.53 9 
0.69 7 
0.85 7 
1.02 7 
1.19 6 
1.36 5 
1.54 4 
1.73 3 
1.94 3 
2.16 3 
2.39 3 
2.65 2 
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ACTIVITY 
 
Student groups need mm rulers and graphing calculators or spreadsheets on computers. 
 

Particle Physics – Σ− Lifetime 
 
Most of the particles discovered during the 20th century are unstable and spontaneously 
decay with very short mean lifetimes into less massive particles. Our goal here is to 
determine the lifetime of one such particle, the Σ− particle. To produce the Σ− particles 
whose tracks are shown in Figures 1 and 2, high-energy protons from the CERN Proton 
Synchrotron crashed into a stationary target. Among the particles produced were negative 
kaons (K-). These kaons were then selected and directed to the Saclay 80-cm bubble 
chamber. Many of the kaons incident on the chamber had low enough energy that they 
stopped before interacting with protons in the chamber. In the photos in Figures 1 and 2, a 
negative kaon (K-) entered from the bottom and left a trail of ions around which hydrogen 
bubbles formed. The K− came to rest and interacted with a proton (also essentially at rest) 
from the liquid hydrogen. The photos show production of a Σ− and a π+, one of several 
possible results of the kaon-proton interaction. 
 
Explain why you expect the Σ− and π+ to have equal and opposite momenta. 
 
 
 
 
 
Use energy conservation to show that Σ− and π+ momentum must each be 173 MeV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Calculate the energy, kinetic energy, and speed of the Σ− when it is produced. 
 
 
 
 
 



 
Calculate the energy, kinetic energy, and speed of the π+ when it is produced. 
 
 
 
 
 
 
The π+ and the Σ− are unstable particles. About 99.99% of all positive pions decay into a 
positive muon and a muon neutrino (π+ →µ+ + νµ). The pion mean lifetime is  
τπ = 2.60 x 10-8 s. About 99.85% of all Σ− particles decay into a neutron and a negative pion 
(Σ− → n0 + π−). In this exercise you will measure the Σ− mean lifetime (τΣ−). 
 
Particle decay seems to be a random process like flipping coins or rolling dice. Imagine a 
large collection of N coins. All coins are flipped at once, and after the flip each coin that 
shows heads is removed from the collection. The remaining coins are flipped again, and 
the process of removing coins that show heads is repeated. As this process continues, the 
number of coins remaining decreases, and the number that show heads after each flip 
decreases roughly in the same proportion. For a single coin, the outcome of any one flip 
(heads or tails) is not easily predicted. However, for a large number of flips of a fair coin or 
one flip of a large number of fair coins, nearly half of the coins flipped will produce heads 
and nearly half will produce tails. When starting with a large number of coins (N0), we 
expect that half the coins after any flip will show heads and be removed. We can represent 
the number of coins (N) remaining after a number of flips (n) by  
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Suppose you have a large collection of N0 fair 6-sided dice. After each shake of the 
dice, those showing one spot on the top face are removed.  
Write an expression for the number (N) of dice remaining after n shakes.  
Calculate the value of the decay constant λ. 

 
We assume a random process of the type indicated above represents particle decay. In 
this model for unstable particles, a constant fraction of the particles present at any time 
(ΔN/N) will decay and be removed from the collection during some specified time interval 
Δt, i.e. (ΔN/N)/Δt = λ = decay constant. The value of λ depends on the nature of the 
particle. For a system starting with N0 particles at time t = 0, the number of particles 
remaining at any later time is given by the expression 
 

τλ /
00

tt eNeNN −− == , where 1/λ = τ = mean lifetime. 
 

By measuring (ΔN/N)/Δt = λ several times for a random collection of one type of particle, 
one can determine an average value for λ and, consequently, an average value for τ, the 
mean lifetime of the particle. That is the goal of this exercise. 
 



 

 
Figure 1: Photo (tracks twice actual linear size) from film of a Stopping K- run at CERN in the 
Saclay 80-cm Hydrogen Bubble Chamber. Adapted from H. Whiteside, Elementary Particles, 1971, 
photo from of the University of Maryland High Energy Physics Group. 
 
Notes:  Photo on left is analyzed in the Inelastic Scattering exercise. 

The S- in the photo on the right slows to a stop, interacts with a proton and produces neutral 
particles that leave no tracks. 



 
Figure 2: Segments of nine photos (tracks twice actual linear size) from film of a Stopping K- run at 
CERN in the Saclay 80-cm Hydrogen Bubble Chamber. (From H. Whiteside, Elementary Particles, 
1971.) Circled S- interaction in bottom center is displayed in bottom right photo. 



The photos in Figures 1 and 2 present a small random selection from a large 
collection of images of the interaction K- + p+ → Σ− + π+ in the Saclay 80-cm liquid 
hydrogen bubble chamber at twice its actual size; i.e., 2 cm on photo represents 1 cm 
on bubble chamber surface. A nearly uniform magnetic field was directed toward the 
viewer perpendicular to the plane of the photo. The strong magnetic field (B = 1.7 tesla) 
produced curvature in the tracks of charged particles moving in the photo plane. In most 
cases, the Σ− decays in flight by the process Σ− → n0 + π−. The Σ− will occasionally last long 
enough to lose all its kinetic energy by ionizing hydrogen atoms along its path in the 
chamber. (The path length will be about one centimeter in the chamber (2 cm in the 
photos) for Σ− particles with initial momentum p = 173 MeV.) When that happens, the Σ− can 
interact with a stationary proton to form neutral particles that leave no tracks. 
 
Identify the Σ− tracks in Figures 1 and 2 and measure their lengths (LM) to the nearest 
mm. Record the values in the table below. 
 

Table 1. LM Measured Σ− Track Lengths (mm) 
Fig. 1 
Left 

Fig. 1  
Right 

Fig. 2  
Upper Left 

Fig. 2  
Upper Center 

Fig. 2  
Upper Right 

     

 
Fig. 2 
Center  

Left 

Fig. 2 
Center 
Center 

Fig. 2 
Center 
Right 

Fig. 2  
Lower 
Left 

Fig. 2  
Lower          
Center 

Fig. 2  
Lower 
 Right 

      

 
The process by which a moving charged particle slows down while ionizing hydrogen 
atoms in a liquid hydrogen bubble chamber is well studied. As a particle loses energy (and 
momentum), its speed decreases. It spends more time in the vicinity of each H atom along 
its path and produces more H ions. Thus, ion density and energy loss rate and time per 
mm of track length increase as the particle moves along. For S- particles with initial 
momentum of 173 MeV, this relation is embodied in the values for times of flight 
corresponding to various track lengths listed in Table 1. 
 
The track lengths that you measure in the photos are not likely to be the true track lengths 
in the bubble chamber since the true tracks are not likely to be in the plane of the photos. 
The S- tracks are more likely to be formed at some dip angle (θ) to the photo plane. Then 
the true track length (LT) is related to the measured track length (LM) by the expressions  
   

LM  = LTcosθ   and   LT  = LM/cosθ . 
 
Since we don’t have values for the dip angle for each S- track, we will adjust each LM value 
by dividing it by 2 to compensate for the magnified scale of the photos and dividing by the 
average value of cosθ. This should be a reasonable correction to convert LM values to LT 
values. In three dimensions, the average value of cosθ is π/4.  
 



Thus, LT = (LM /2)/( π/4 ) = (2/π)LM = 0.637LM . 
 

Table 2. Time of Flight Related to Track Length for S- Particles with  
 Initial Momentum of 173 MeV 

 
LM Bin  
(mm) 

 
LT Avg. 
(mm) 

Bin Start 
Time  

(10-10 s) 

Bin End 
Time  

(10-10 s) 

Bin  
Δt  

(10-10 s) 

Ni  
S- at Bin 

Start 

ΔNi  
S- Decays 

in Bin 
  0.5 –   1.5 0.3 – 1.0 0.08 0.23 0.15   
  1.5 –   2.5 1.0 – 1.6 0.23 0.38 0.15   
  2.5 –   3.5 1.6 – 2.2 0.38 0.53 0.15   
  3.5 –   4.5 2.2 – 2.9 0.53 0.69 0.16   
  4.5 –   5.5 2.9 – 3.5 0.69 0.85 0.16   
  5.5 –   6.5 3.5 – 4.2 0.85 1.02 0.17   
  6.5 –   7.5 4.2 – 4.8 1.02 1.19 0.17   
  7.5 –   8.5 4.8 – 5.4 1.19 1.36 0.17   
  8.5 –   9.5 5.4 – 6.1 1.36 1.54 0.18   
  9.5 – 10.5 6.1 – 6.7 1.54 1.73 0.19   
10.5 – 11.5 6.7 – 7.4 1.73 1.94 0.21   
11.5 – 12.5 7.4 – 8.0 1.94 2.16 0.22   
12.5 – 13.5 8.0 – 8.6 2.16 2.39 0.23   
13.5 – 14.5 8.6 – 9.3 2.39 2.65 0.26   
14.5 – 15.5 9.3 – 9.9 2.65 2.95 0.30   

 
From your record of measured track lengths (LM) in Table 1, enter the number of decays in 
each bin (ΔNi) in Table 2. Then calculate and enter the Ni values for each bin.  
 
Next, calculate from Table 2 and enter in Table 3 below the decay constant λi for each bin 
(i) from LM = 2 mm to LM = 15 mm  λi = (ΔNi/Ni)/Δti . 
 
Track lengths less than 2 mm are omitted from the calculation because such short tracks 
are difficult to identify with reliability. For tracks longer than 15 mm, the S- particle is likely 
to have come to rest and interact with a proton before decaying, so those track lengths are 
not representative of decay times. Thus, tracks longer than 15 mm are also omitted from 
the calculation. Some of the λi values will be zero. 
 
Calculate the average λi value. Include the zero λi values in your average. 
 
    Average λ = λav = ____________________ 
 
Calculate the mean lifetime (τ) for the S- particle and the approximate precision of the 
measurement nτ  , where n = number of decays included in the calculation of τ. 
 
 Mean lifetime τ = 1/λav = _________________±  nτ  = __________________ 
 
 
 



Table 3. Decay Constants for Each Bin 
LM Bin    (mm) λi = (ΔNi/Ni)/Δti    (1010 s-1) 

1.5 –   2.5  
2.5 –   3.5  
3.5 –   4.5  
4.5 –   5.5  
5.5 –   6.5  
6.5 –   7.5  
7.5 –   8.5  
8.5 –   9.5  
9.5 – 10.5  

10.5 – 11.5  
11.5 – 12.5  
12.5 – 13.5  
13.5 – 14.5  
14.5 – 15.5  

 
Finally, plot Ni vs. t  for LM values of 2 mm to 15 mm. Fit an exponential curve to the data, 
and compare λ and τ values from the fit to your calculated λav and τ values and to 
standard λ  and τ values. 
 
Calculated:  λav = ____________  τ = ________________ 

Fit:  λ    = ____________  τ = ________________ 

Standard: λ    = 0.676 x 1010 s-1  τ  = (1.479 ± 0.011) x 10-10 s 
 
 
 
 

Reflection 
Why would the 80-cm bubble chamber used here be inadequate for measuring the lifetime 
of a particle if the lifetime were 100 times shorter or 100 times longer than the Σ− lifetime? 


