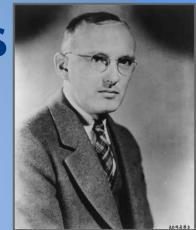

QuarkNet Radio Telescope

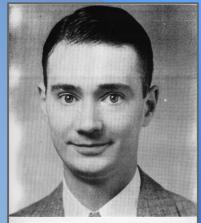
Saniya Qadir, Maciej Mleczko, and Jake Johanik with Ben Sawyer, George Dzuricsko and Chris Stoughton

Goals

- Research and design a radio telescope
 - Assemble a working feed horn and antenna
 - Program necessary software
 - Obtain a signal
- Cater research and data to high schools so that they could build their own telescope
- Create a nationwide array of telescopes (using interferometry)


Radio Astronomy

- Radio Signal (3 kHz to 300 GHz)
- Astronomy using radio frequencies
- Examples of things we can observe:
 - Features invisible to the eye
 - Pulsars
 - Radio galaxies
 - Neutral hydrogen
 - And many more...

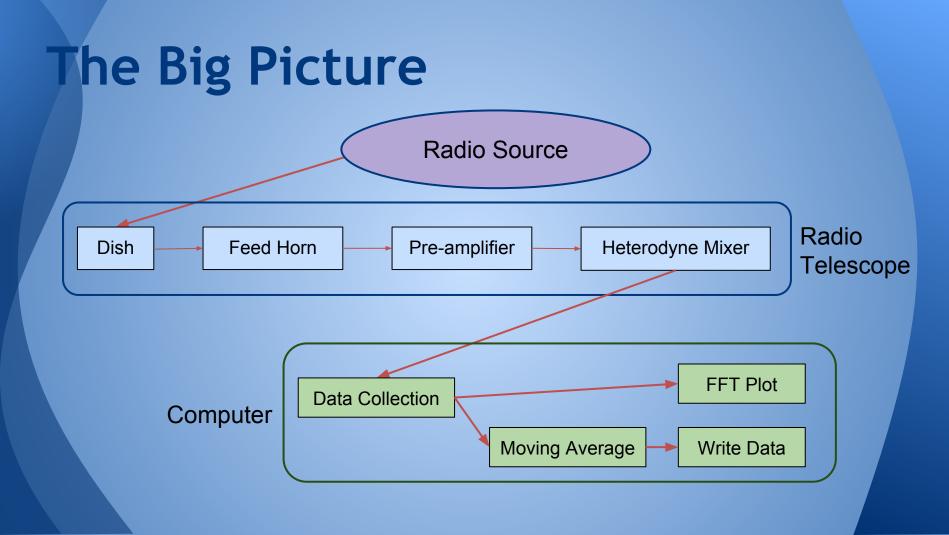

Karl Jansky (UW-Madison)

- Radio Engineer at Bell Labs
- Built receiver antenna (14.6λ)
- Formulated that radio static came from the Milky Way
 - Flux density of radio sources (1 Jy=10⁻²⁶ W m⁻² Hz⁻¹)

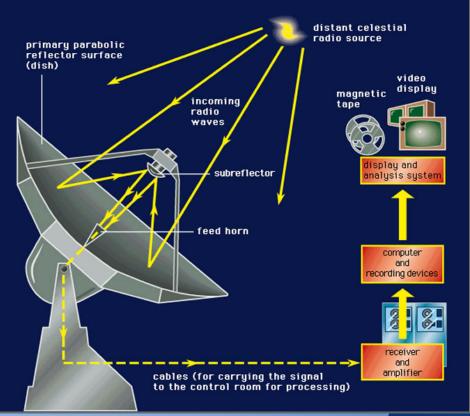
Jansky's rotating telescope Replica in Green Banks, West Virginia

- Grote Reber (IIT-Wheaton, IL)
- Inspired by Jansky

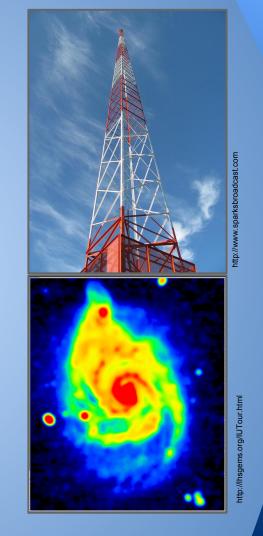
- Built modern-day radio telescope in his mother's backyard (9 meters)
- Observed strong emissions across Milky Way
- Confirmed Jansky's formulation


Reconstructed version of Reber's 9 meter dish in Green Banks, West Virginia

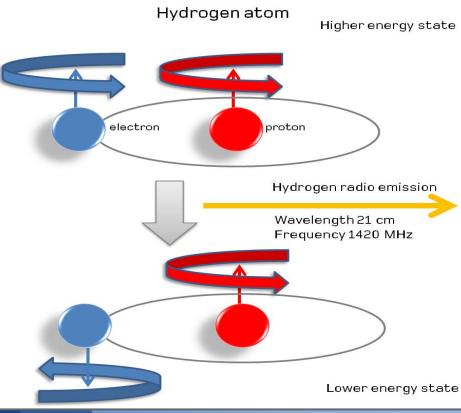
Large Radio Telescopes


Worlds Largest Radio Telescope ■1000 feet Arecibo Observatory, Puerto Rico ■3 football fields Green Banks Radio Telescope Green Banks, West Virginia 100 meter diameter

Radio Telescope Basics

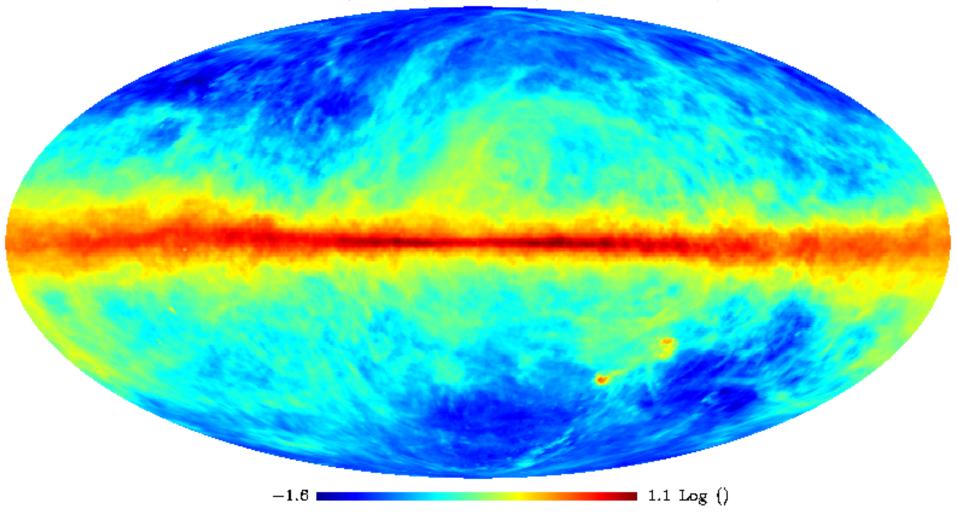

Parts of a Radio Telescope:

- Parabolic Dish/Mount
 - Collects and focuses radio waves
- Feed Horn
 - Receives radio waves
- Pre-Amplifier
 - Amplifies raw signal from feed horn
- Heterodyne Receiver
 - Turns analog signal into digital signal
- Data Acquisition
 - Receive and write data onto computer
- Data Analysis
 - Analyze power spectrum over time



Radio Sources

- Artificial sources
 - Radio stations
 - Aircraft communications
 - Signal generators
 - etc.
- Natural sources
 - Blackbody radiation
 - Synchrotron radiation
 - <u>Neutral hydrogen emission</u>



Hyperfine Transition of Neutral Hydrogen

Detect 21 cm radio emissions from clouds of neutral hydrogen across the galaxy from the Leiden/Dwingeloo HI survey and the Instituto Argentino de Radioastronomia survey.

Dish Feed Horn Pre-amplifier Heterodyne Mixer

Dish

- Parabolic Mesh surface (8 ft in diameter)
- Collects incoming radio waves
- Reflects radio waves into one point
- Bigger dish = Sharper resolution

Heterodyne Mixer

The Feed Horn

Feed Horn

Dish

- Receives the focused radio waves reflected from the dish
- Has an antenna inside

Pre-amplifier

 Converts the radio signal into a weak electrical signal

Dish **Feed Horn** Pre-amplifier Heterodyne Mixer eed Horn Calculations Given: $\lambda = 0.21106 m$ Researched equations and $d = waveguide \ diameter = 0.1575 \ m = 6.2 \ in = .746\lambda$ calculated dimensions Monopole Antenna Length: $L_a = \lambda/4$ $L_a = (0.211 \text{ m})/4 = 0.05277 \text{ m} = 5.277 \text{ cm}$ $(L_a = antenna \ length)$ Low-Cut Wavelength: $\lambda_{LC} = 3.412r$ $\lambda_{LC} = 3.412(0.07874 m) = 0.2687 m$ $(\lambda_{LC} = \text{low cut wavelength}, r = \text{radius of cylinder})$ $\lambda_{g} = 1/\sqrt{\left(\frac{1}{\lambda}\right)^{2} - \left(\frac{1}{\lambda_{LC}}\right)^{2}} \qquad \lambda_{g} = 1/\sqrt{\left(\frac{1}{(0.211 \, m)}\right)^{2} - \left(\frac{1}{(0.2687 \, m)}\right)^{2}} = 0.3411 \, m$ Waveguide Length: (λ_{g} = waveguide length, λ = wavelength, λ_{IC} = low cut wavelength) Distance from antenna to back plate: $L_{b} = \lambda_{g}/4$ $L_{b} = (0.3411 \text{ m})/4 = 0.0853 \text{ m} = 8.53 \text{ cm}$ $(L_{b} = \text{distance from antenna to back plate})$ Length of Cylinder: $L = \frac{3}{4}\lambda_{g}$ $L = \frac{3}{4}(0.3411 \text{ m}) = 0.2558 \text{ m} = 25.58 \text{ cm}$ (L = length of cylinder) 3 dB Beamwidth: $BW_{3dB} \approx 66/d_{\lambda} degrees$ $BW_{3dB} \approx 66/(0.746\lambda) degrees = 88.46^{\circ}$ (BW = beamwidth, d_{λ} = feed horn diameter in terms of λ)

Feed Horn Construction

Heterodyne Mixer

Paint can

Dish

• Copper tube

Feed Horn

• Solder, soldering iron, and glue

Pre-amplifier

- Aluminum mounting brackets
- Coaxial (SMA) adapter mount
- Long (8ft) coaxial cable

LNA (Low Noise Amplifier)

Heterodyne Mixer

Pre-amplifier

Attached to the feed horn
Takes the weak signal from feed
horn and adds 14.8 dB (Roughly 30 times stronger)
Has a noise temperature of 50 Kelvin

(very low)

Dish

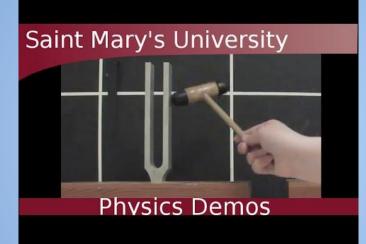
Feed Horn

Heterodyne Mixer (Airspy)

Heterodyne Mixer

- Converts high frequency analog signal to a low frequency wave digital output
- Connected via USB to computer

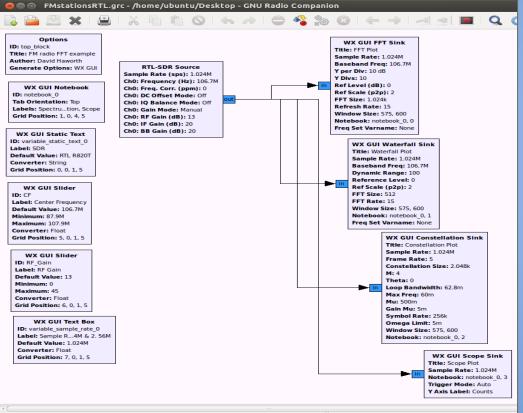
Pre-amplifier


- Relays the signal to a computer readable format (data collection system)
- Mixes and then digitizes

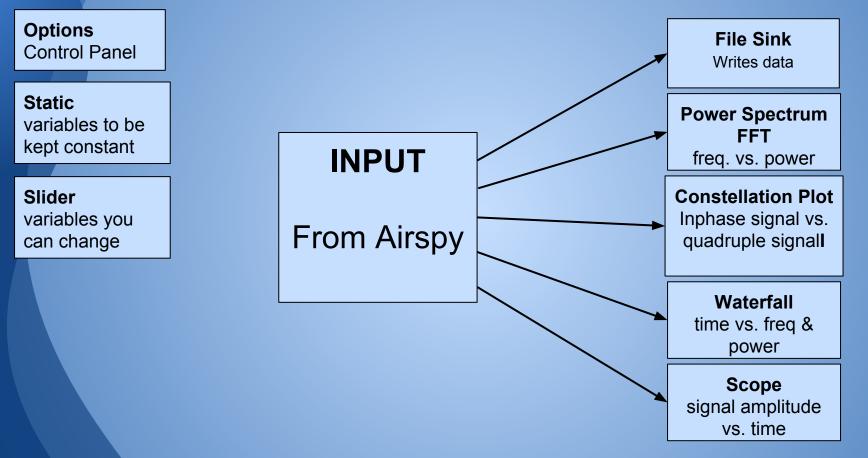
Dish

Feed Horn

Beat Frequency

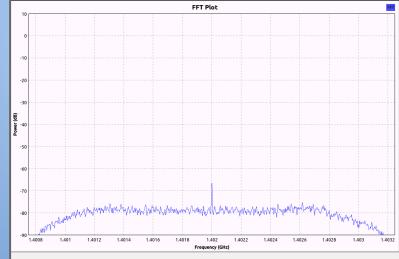


Airspy gets an incoming frequency and creates a frequency similar to it thus making a beat frequency


GNUradio

- GNUradio is a user friendly interface that allows users to create flowcharts to develop programs
- Free Software Development Toolkit
- Implements SDR (Software Defined Radio)
- Uses code blocks to operate
- Open Source

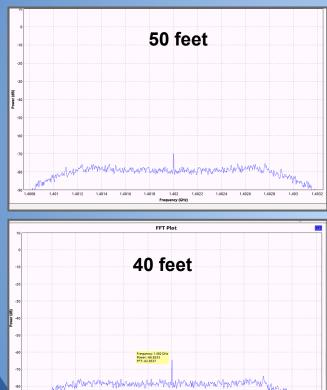
GNUradio Flowchart


GNUradio Simplified Flowchart

Power Spectrum Graph

- Uses the fast fourier transform (FFT)
- Plots frequency vs. power (strength of signal)
- Used to identify and analyze signals and noise

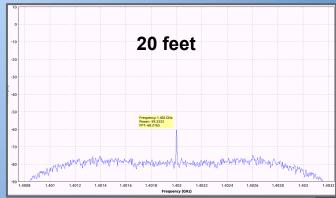
levels


Theoretical Results

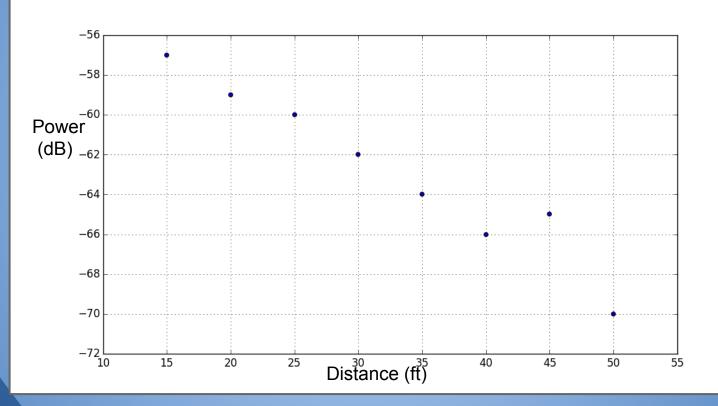
- Point at source with uniform radio wave emission (the Sun):
 - Ambient noise increases
- Point at a signal generator with antenna:
 - Peak shows up at designated frequency
- Point at hydrogen clouds:
 - See peak around 1.402 GHz

Temporary Site Location

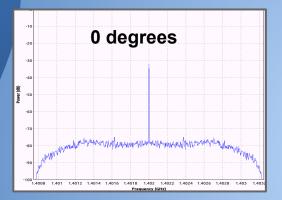
Data Collection P(d)

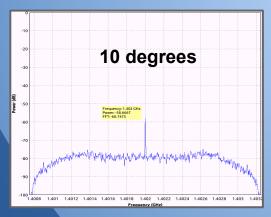

1.4012 1.4014 1.4016 1.4018 1.402 1.4022

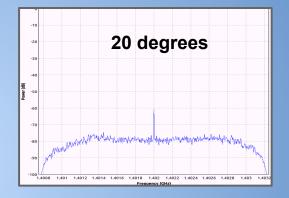
Frequency (GHz)

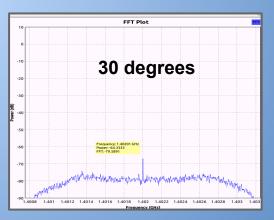

1.4024 1.4026 1.4028 1.403

1.401

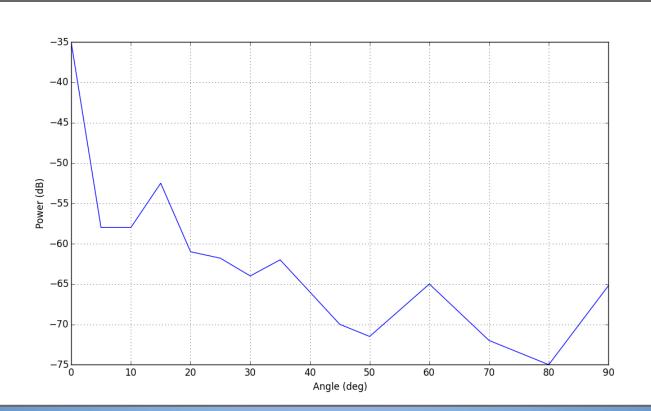


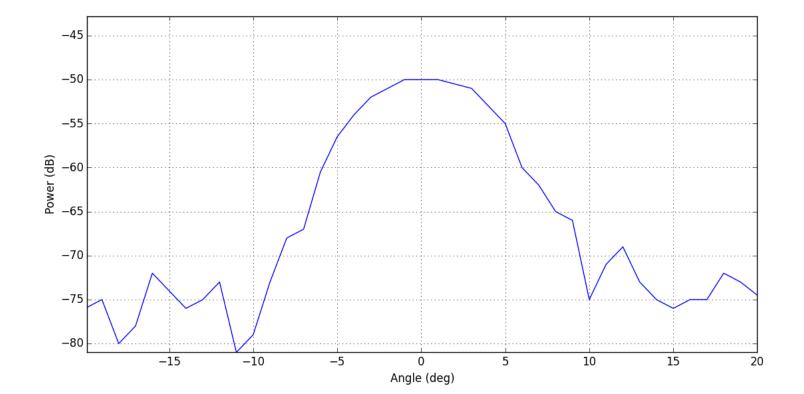


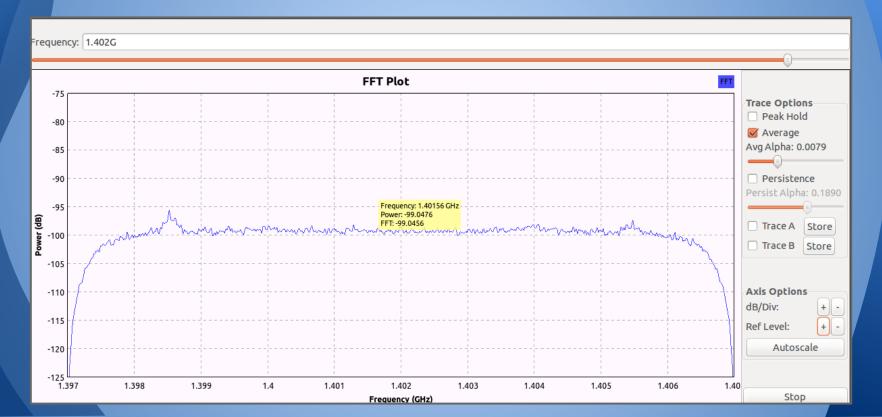

Distance Vs. Power Plot



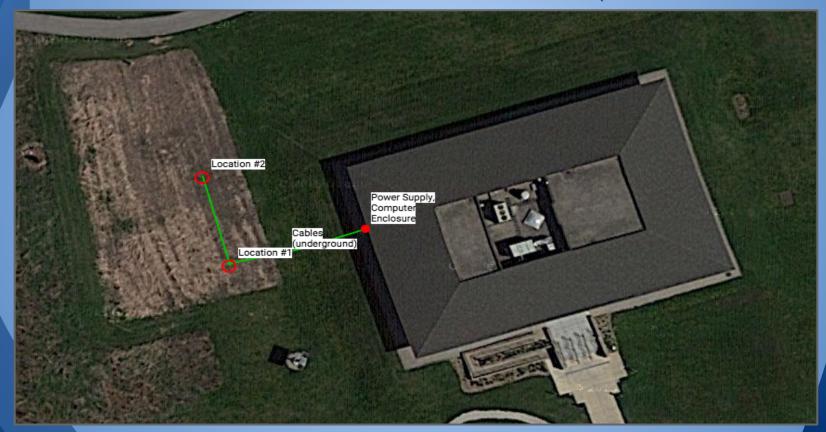
Data Collection P(θ)






Initial Radiation Pattern

Better Radiation Pattern


Results: Away from Sun

Results: Towards Sun

Frequence	cy: 1.402G										
-75 r	FFT Plot										
-75											Trace Options Peak Hold
-80											Average
-85			·								Avg Alpha: 0.0085
-90											Persistence Persist Alpha: 0.1890
-95- (B) -100-	m	mutur	man	m	monther	man	mann	manum	mmm		Trace A Store
		I I I I I I I								h	Trace B Store
-105	7	+	·		 				+	4	
-110	·	 		 		 1 1				{-	Axis Options
-115		 	 	 			 		1 1 1 1 1		dB/Div: + - Ref Level: + -
-120						 		1	1	}	Autoscale
-125 1.3	97 1.3	398 1.399	1.4	1.401	1.402	1.403	1.404	1.405	1.406	1.4	
Frequency (GHz) Stop											

Lederman Science Center (Permanent)

Interferometry

- Many radio telescopes operating in sync with each other
- Greatly increases overall resolution
- A distant goal for the QRT

Atacama Large Millimeter Array (ALMA)

Project Management

Tasks	Status	Problems/Errors/To Do	Solutions		
GNU Radio GUI	Complete	Spectrum Graph working-other three graphs not showing %CPU Increasing/Decreasin	Change settings/Tinker with sample, sinks-FFT. Fix CPU- Test with Throttle on Mac/De		
Test GNU Radio and AirSpy on artificial source	Complete	met Sten on 14th floor, two peaks showing- controlling the center frequency??			
GNU Radio and DA	Complete	Install GNURadio onto server			
Engineer Pole Support	Complete	Talking with electrical people/make mount sketch	LNA model number: ZX60-P33ULN+		
Feed Horn	Complete	Buy/Make? Research-Jake, Write paper on design- Coffee Can??			
Install Dish (telescope)/Build	Complete	Read installation guide online			
String Wires	Complete	Create basic map w/location of dish and conduit, Find safe			
Basic Tests (on astronomical objects)	Complete				
PYEPHEM	Complete				
Previous Measurements	Complete				
8-Hour Scan	In Progress				
ALM NOT DALLARD A					
BASICS:		Links		1	
Background Information on Radio Telescope	Complete	http://www.tek2000.com/cgi-bin/web.cgi?command=productcategory&header_id=Sate	Dish Specifications		
Python-up to Battleship	Complete	http://www.w1ghz.org/antbook/chap4.pdf	Parabolic Dishe and Feedhorn Design		
Get GNURadio on laptops	Complete	http://www.tvrosat.com/phpBB-3.0/phpBB3/viewtopic.php?f=146&t=1252	Installation guide		
Do GNURadio tutorials-understand basics	Complete	http://www.sbrac.org/files/budget_radio_telescope.pdf	21 cm Radio Telescope for the Cost-Conscious		
Sketch of Tornado Shelter/Outback	Complete	http://www.stargazing.net/david/GNUradio/RTLFMstations.html	GNU radio Airspy		
Photoshop of Dish/Lederman Center	Complete	http://www.qsi.net/va3iul/Antenna/Antenna%20Types%20and%20Antenna%20Pattern	Descriptions and specs on antenna types		
Measurement/Outback Placement Sketch	Complete	http://caltopo.com/m/3D1H	Editable Version of Outback Sketch (NEED TO ZOOM IN TO SEE)		
Engineer Pole Support Sketch	Complete	http://www.packratvhf.com/Article_9/Dish_Not.pdf	3 Feedhorn Types		
Clean the Tornado Shelter	Complete	http://www.w1ghz.org/antbook/chap6-3.pdf			
Set up table/chairs in tornado shelter	Complete	http://www.vk4adc.com/web/index.php/microwave-projects/62-antennas/139-coffee-ca	Coffee can feed instructions		
Status Meeting Monday	Complete	http://www.ijetae.com/files/Volume4Issue5/IJETAE_0514_107.pdf	Important formulas for coffee can (or conical) dimentions		
Build Feedhorn	Complete	http://caltopo.com/m/4R2T	Updated Sketch of Outback (cables/measurements included)		
GNUradio (average block, threshold block, CF)	Complete	http://caltopo.com/m/383J	Lederman science center diagram		
Schedule Lectures/Talks with Scientists (Saniya)	Complete	http://rhodesmill.org/pyephem/quick.html	Pyephem refrence guide		
Find feed horn materials	Complete	http://www.reeve.com/Documents/RadioScience/CelestialRadioSources.pdf	Prominant Radio Sources		
Get GNURadio on server computer	Complete	https://github.com/airspy/host/wiki/Troubleshooting			
		http://seclab.skku.edu/wp-content/uploads/2015/02/gnuplot-freq-commands.pdf	GNUPlot manual		
		http://matplotlib.org/Matplotlib.pdf	Matplotlib manual		
		http://alma.mtk.nao.ac.jp/e/aboutalma/more/system.html	Interferometry Explanation		

YOU CAN BUILD ONE TOO....

Acknowledgements

Instrumentation

- Gustavo Cancelo
- Paul Kasley
- Kermit Carslon
- Dave
- Ray Tomilin
- Dan Schoo

Electrical

- Dave Featherston
- Steve Chappa
- Jim Ranson
- Curtis Danner
- Wes Mueller

HR

- Kathleen
- Tanja Waltrip
- Liz Quigg
- Lucy Ontiveros
- Gayle

7 West

- Connie Lang
- Seton Handville
- Liz Buckley-Geers

Outback

- Ed Dijac
- Glenda Adkins
- Gary Coppola

Roads and Grounds

- Jim Niehoff
- Gary Coppola
- John Voirin
- David Shemanske
- Steve Whitaker
- Glenn Smith

Mechanical

- Dave Erickson
- Bill Gatfield

Scientist Advisors

- Brad Benson
- Steve Kent
- Albert Stebbins
- Steve Meyer
- John Carlson
- Steve Dixon
- Tim Meyer
- Peter Timbie
- Bill Higgins

Lederman Science Center

- Maureen Hix
- Susan Dahl
- Sue Sheehan
- Marge Bardeen
- Ketevan Akhobadze

Other

- Ramon
- Scott
- Gregory
- Dave McGinnis
- David Peterson
- Pete Seifrid
- Kim
- Sue Grommes
- Dwight Featherston
- Leonard Nelson
- Dave Mertz
- Ken Koch