Performance Study of a 2D Prototype of Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

> Sanjay Subramanian (Mentor: Dr. Ted Liu)

Compact Muon Solenoid (CMS)

Detector at CERN
Looks for Higgs Boson, dark matter particles, extra dimensions
Huge project – over 4000 physicists, engineers, and others

From cern.ch

CMS Challenges

https://www.youtube.com/watch?v=EVr_7QtQYW8 Luminosity – Number of collisions per unit area per unit time 2011 luminosity: 6 x 10³³ cm⁻²s⁻¹, planned 2030 luminosity: 5 x 10³⁴ cm⁻²s⁻¹

CMS L1 Tracking Trigger:

Will need to reconstruct charged particle trajectories "on-the-fly" for every beam crossing (25 ns, or 40 Million beam crossings per second), from an ocean of input data (bandwidth required to transfer up to ~ 50-100Tb/s)

This requires extremely fast high bandwidth data communication **as well as** *massive pattern recognition power,*

with lots known patterns to be compared against the multiple input data streams simultaneously with near zero latency (~ few μs)

This is challenging! 7/31/14

Borrowed from Dr. Ted Liu's HL-LHC Tracking Trigger Challenges

http://www-visualmedia.fnal.gov/VMS_Site/gallery/stillphotos/2014/0000/14-0089-24D.hr.jpg

7/31/14

Borrowed from Dr. Ted Liu

What is VIPRAM?

♦Uses Content-addressable memory (CAM)

Different from RAM

•VIPRAM stores many patterns in CAM cells

♦ Hardware-based pattern recognition

♦ The final product will be 3D integrated circuit – higher pattern density and higher speed than in 2D

How Associative Memory Works

7/31/14

Deeper into the Design

• Selective-precharge saves power; tradeoff

between power and speed (NAND vs. NOR cells)

• 2D prototype: 128 rows, 32 columns (4096 roads total)

Figure 8 – protoVIPRAM pad arrangement.

• 2D prototype has all 4 layers in same plane

 Majority Logic – an additional layer for each road that indicates if there is a match

From Dr. Ted Liu

- 2D VIPRAM prototype mounted on mezzanine card and connected to FPGA
- Load firmware (different for different clock frequencies) using ChipScopePro software
 - Clock frequency dictates rate at which instructions given to chip
- Write test files in Python
- Run from the Terminal (on a Scientific Linux machine)

Prototype Pulsar II Mezzanine card

11

Testing Setup (cont.)

- Load random numbers into all locations in the chip
- Sequentially check each random number loaded in each location to see if there is a match
- Works perfectly up to 90 MHz
- Testing project outline:
 - Stress (torture) tests pushing the chip to its limits
 - Realistic tests using real data to gauge chip performance

♦One possible reason for errors – great deal of power consumption

♦Load: 000...00 in about N% of the roads, load 111...11 in about (100-N)% of the roads

♦ For every row:

♦Load and check: 111...10 every 4 columns

♦Load back whatever was in road before Step 2

Stress Test Results

Preliminary Real Data Testing

•Scientists from CERN provided real pattern banks

♦10, 000 patterns in one file

♦Loaded 4096 randomly chosen patterns into chip sequentially, checked for these 4096 patterns

♦Efficiency – 50 MHz: 100%; At 77MHz: 96.3%; at 90 MHz: 20.2%

♦ Can we do better?

What's the best configuration?

Most ideal: Each outcome equally likely
2^4 = 16 outcomes -> 1/16 probability for each outcome

Optimal configuration minimizes:

$$C = (p1-1/16)^2 + (p2-1/16)^2 + ... + (p16-1/16)^2$$

15 choose 4 = 1365 ways of picking 4 bits
Brute force scan through possibilities

Optimization Results

Efficiency Chart		
	77 MHz	90 MHz
No Optimization	96.3%	20.2%
Full Optimization	100%	99.8%

Project Status

Next step is making the 3D prototype
Rigorous testing contributes to design,
provides benchmark
Characterization of Real Pattern Banks

useful for gauging real performance

Future Work

Varying/Monitoring other variables

♦Power

♦Voltage

Testing 3D prototype

Personal Impact

Little hardware background
Computer science experience
Learned about challenges facing modern particle physics
More programming experience!
Bash scripting
Over 1000 lines of code in Python, bash, C++

Acknowledgements

♦Dr. Ted Liu (Mentor) ♦Entire VIPRAM team ♦Dr. Sergo Jindariani ♦ Dr. Nhan Tran ♦(Soon to be Dr.) Sid Joshi ♦ Dr. Jim Hoff ♦Dr. Jamieson Olsen ♦ Mr. Dzuricsko, Dr. Stoughton, Ian, fellow students ♦ Fermilab – Program, facilities, cookies and cheese