Mars Rover Mission

Bishesh Khadka Naperville North HS

> Brian Nord Fermilab

7/31/2013

Copyright 1997 by Salun J. Hernito

Acknowledgements

- QuarkNet family
- SiDet Staff
- WDRS Staff
- Peers

Introduction

Naperville North High School
Soon to be senior
Interests: Physics, Computer Science and pedagogy

Programming Background:
 Intermediate Python and Beginner Java

Are we alone?

Multiple worlds

 Ancient Hindu Scripture

 Cosmic Pluralism

 William Hershel, Immanuel Kant, Benjamin Franklin

 Invasion of Earth by Martians

 H.G. Wells 1897 novel: War of the Worlds

Are we alone?

 Radio Signals
 Nikola Tesla, 1896
 Wow! Signal 1977
 SETI: Search for Extraterrestrial Intelligence

• Drake Equation $N = R^* \cdot f_p \cdot n_e \cdot f_\ell \cdot f_i \cdot f_c \cdot L$

N= number of civilizations within our galaxy with which communication is possible

Why Mars?

Suspected to have had conditions capable of supporting life
 Mars Ocean Hypothesis
 Prospect of alien life
 Close to home

What has been done on Mars?

Mars Exploration Project

- > Primary Goal: Determine if life ever arose on Mars
- Unmanned explorations
- Sojourner Rover 1997
 - > Proof-of-concept
 - > Spectrometer

What has been done on Mars? (cont'd Spirit & Opportunity Rovers 2004 Geology Soil and Rock test for past water activity Curiosity Rover 2012 Continuation of geology CheMin Lab Various Spectrometers > More atmospheric experiments. • REMS

Our Mission

Inspired by previous generations of rovers
Purposes:

- > Quantitatively and qualitatively examine environment for life sustaining qualities.
- Fabricate a computer-based interface from which to control and monitor aspects of the rover

Our Rover: Prudence

opru dence: the ability to govern and discipline oneself by the use of reason; skill and good judgment in the use of resources

Scientific Objectives

<u>Science</u> •Quantitatively Examine: •water content in ground atmospheric pressure •air temperature •UV levels •Qualitatively Observe: •live video stream from Rover

<u>Sensor</u>

•Soil Moisture Sensor

Gas Pressure Sensor
Temperature Probe
UVB Sensor

•Android device attached to Rover

Early Stages

Study of Mars

Mars Science Laboratory: Curiosity Rover

Compiled and Annotated by John A. Greene

Early Stages cont'd

Out of the box rovers

Mars Rover: Spirit Rover

Prototype #1 Modified version of Spirit rover. Fully mechanized drive • Autonomous operation w/ Ultra sonic sensor NXT-G • Low clearance Bulky steering Very slow

Questions elicited by Prototype 1

How do we resolve engineering issues?
How do we integrate more robust code?
How do we incorporate knowledge from reading onto rover?

Engineering Upgrades

Clearance issue

- Reorient motors, 2 in front for front wheel drive
- > Steer with differential motion of the 2 motors

Software Upgrades

• NXT G did not allow desired complexity RobotC and LeJOS Command line based languages Based on C and Java LabVIEW > Object oriented Decided to experiment with LeJOS and RobotC

Rover Science

• We needed various instruments that analyze Martian terrain

• Vernier Sensors NXT SENSOR

Plethora of sensors compatible with our NXT Brick

Research and Design

Arduino vs. NXT Brick

> Both worked with Vernier sensors

• Experimented with LeJOS and RobotC

- > Began learning both languages
- Languages were a bit meticulous
- Given time crunch, needed a more efficient alternative

Research and Design (cont'd)

Switching to LabVIEW for Mindstorms

- > Pros:
 - Systematized
 - User friendly GUI creation w/ Front Panel
 - LabVIEW is widely used in robotics and associated data acquisition
- > Cons:
 - Still a new language (to me)
 - Can only run 1 .vi(program) on NXT at a time

Research and Design (cont'd)

Instruments for final version

- > Weather station sensors
 - UVB
 - Gas Pressure
 - Temperature probe
- > Chem lab sensor
 - Soil moisture
- > Drive
 - Motors
 - Ultrasonic sensor,
- > Power supply
 - Solar panel
 - Rechargeable battery
- > Utility
 - Motor and sensor multiplexer

Research and Design (cont'd)

Environment

- > The idea
 - Martian terrain will consist of portable "cage" and buckets of red clayish dust and various rocks
- > The reality
 - Dusty and rock like
 - Simulate it with some sand, gray gravel, and rocks found at Fermilab's warehouse

First Draft of Prudence

Chassis

First Draft of Prudence

Instruments

First Draft of Prudence

DITLE-

Hererei

Helelelele

00

ee

3

 $\boldsymbol{\leftarrow}$

000000

First draft issues

- Over weight
 Steering
 Traction
 Remote control Program
 LabVIEW could only run one program at a time
- Solar Panel's rechargeable battery

Final Draft Construction Improvements on Chassis

Final Draft Steering

b

.

Final Draft Science

0101010

UVB Sensor

Soil Moisture Sensor Video Camera on the back

Temperature

Sensor

30

Main Annii astina Instance

1

Final Draft Autonomous Rover

Mission Accomplished! (Final package)

What was our task?

 Construct a Mars Rover using LEGO Mindstorms with potential to utilize as a medium of pedagogy that complies with Next Gen Science Standards.

Classroom

Multifaceted teaching/learning process Math, Science and Engineering Humanities

Teamwork, planning, project management

What we learned

Or Circumvention of various road blocks

- Engineering
 - Gear Systems
 - Steering
 - Weight distribution
 - Traction
- > Software
 - New language learned: LabVIEW

What we learned con't

Plan project with the question stem: "What will it do?"

- > Versatile with the "How to" part
- Generic questions, then branch off to specifics
- > Graphically organize plans

Recording logs of work accomplished

> Blog: www.fermimachines.wordpress.com

Learn from similar, previous endeavors

Conclusion

A practical method of understanding some of the functions of the universe is to study machines.

The Bigger Picture

Open ended projects encourages "autodidacticism"

 A bit of motivation, curiosity and prudence is all that is required to endeavor on an open ended project.