Massively Parallel Processing Pattern Recognition in Extra Dimension

Innovation to go far beyond Moore's Law for future triggering at high luminosity LHC

Thomas Klonowski Fermi National Accelerator Laboratory Quarknet August 3rd, 2012

The What:

- A method for capturing and reconstructing particle tracks in real time
- Content Addressable Memory (CAM)
- Associative Memory for pattern recognition
- Very high speeds and pattern density
- 3D technology is the key

The Why:

The LHC will need much higher trigger performance in the future at higher luminosity

Extra Dimension?

- Traditional circuitry only built with length and width (two dimensional)
- New vertically-integrated design adds height to circuit (three dimensional)

Why Three Dimensional?

- Shorter interconnections
 - Lower power density
- Higher Transistor density

•No space in between tiers

Figure 3 - A Block layout of the protoPants.

Collisions (p-p) at LHC

From "Triggers in HEP" by Ted Liu

Content Addressable Memory

- A special type of memory used in certain very high speed searching applications
- User supplies data word
- Searches entire memory to see if that data is stored anywhere in a <u>single operation</u>
- Returns list of addresses where word was found
- Hardware, not software

From Wikipedia: en.wikipedia.org/wiki/content-addressable-memory

Content-Addressable (CAM) vs. Random Access (RAM)

- Searches entire memory in one operation
- User supplies data word
- Returns list of storage addresses
- Extremely fast

- Searches one address at a time
- User supplies address
- Returns data word at supplied address

Associative Memory

- Using CAM to match hits
- Majority logic to <u>associate</u> the matches of different layers into track patterns
- Massive parallel processing

Comments on Associative Memory

- Based on *CAM cells to match and majority logic to associate* hits in different detector layers to a set of pre-determined hit patterns
 - Performance fundamentally limited by Moore's Law

• This is the main limitation of an otherwise very powerful and proven approach for its future applications within and beyond HEP.

The Challenge of future AM design

Increase the patterns density by 2 orders of magnitude; and increase the speed by a factor of >~ 3, while

keeping the power consumption more or less the same

Much higher Patten Density & higher Speed Yet much less Power Density almost too good to be true

New idea: could go to "extra dimension" to achieve this generic R&D effort at Fermilab

From "Triggers in HEP" by Ted Liu

VIPRAM

(Vertically Integrated Pattern Recognition Associative Memory) http://hep.uchicago.edu/~thliu/projects/VIPRAM/TIPP2011_VIPRAM_Paper.V11.preprint.pdf

Inside the Chip

•Multiple tiers for pattern recognition for multiple detector layers

- •Each tier 10 µm thick
- Hundreds of thousands of CAM cells per tier
 Hundreds of thousands of patterns per chip

•Majority logic tier sends signal when match criteria is met

Internal activity on a 5-tier example chip

Improving Robustness

- 3D VIPRAM Architecture intrinsically faulttolerant
 - Each tube/pattern is independent
 - New architecture allows simple implementation of redundancy for critical signals

•Eventually self-repairing or monitor circuit included

In Summary

- The LHC will need much higher trigger performance in the future at higher luminosity
- The current technology cannot be scaled in a simple manner to accommodate the demand
- Significant improvements or breakthroughs will be needed
- 3D technology is a promising way to go
 VIPRAM is a good example

The Learning Experience

- Real-world experience
- Fantastic opportunity for college and postcollege jobs
- Opportunity to work with scientists on a completely new technology

If You Have Reached This Slide

• The presentation is over

Backup

- 1. Side view of collision
- 2. Cutaway of collision
- 3. 3D model designs- expanded chip
- 4. Collider model design

