# Asymmetry of the Milky Way

Kathryn Mummah

### Part 1

What you need to know astronomically

Part 2

What happened before I showed up

Part 3

What I did & the results of my summer at Fermi Milky Way and SDSS

Part 1

# Artists renditionSDSS



## **Apparent Magnitude**

- How bright a star looks from EarthRepresented as ro
  - Backwards scale

Part 1

Apparent magnitude of the sun is -26.74

## **Absolute Magnitude**

- Absolute is how bright a star would look if it was 10 pc away
  - Pc = 3.26 ly = = 19.2 trillion miles
  - 10 pc = 192 trillion miles
  - Also a backwards scale
  - Absolute magnitude of the Sun is 4.83
  - SCR 0740-4257 would have basically the same absolute and apparent

Part 1

 $(\mathbf{G}-\mathbf{r})_{o}$ 

- Color measurement
  X-axis goes from blue to red
- Y-axis goes from faint to bright
  - Remember-Backwards scale



# Metallicity Part 1

| wnere   | Halo                   |                        | i nin Disc                   |
|---------|------------------------|------------------------|------------------------------|
| Age     | Oldest- up to 13.5 Gyr | Intermediate- > 10 Gyr | Youngest- 1-10 Gyr           |
| Made of | Mostly H and He        | H and He + some metal  | H, He, large amount of metal |
| Color   | Bluest                 |                        | Reddest                      |
|         |                        |                        |                              |

## Dust

Part 1

- Dust makes everything redder
- Most dust is assumed to be less than 100 pc from plane

## Cobe

- Dust map
- Measured infrared from plane to 100 pc from plane



## Part 2 Previous Assumptions

The number of stars above and below the galactic midplane should be the same, because gravity would "smooth out" any large asymmetries



## Milky Way and SDSS



## Part 2 Results (not mine)

There is an asymmetry in the number of stars above and below the galactic midplane 400 pc

800 pc

Fractional asymmetry



# My purpose for the summer

- Look at the data from the paper
  "Galactoseismology: Discovery of Vertical Waves in the Galactic Disc" in more detail
  - Look at color measurements

<u>Part 3</u>

- Break up data into smaller chunks
- Figure out if a more detailed paper is needed

#### Part 3 Three explanations 1. Dust 2. Satellite Galaxy 3. Dark Matter Halo



Part 3

# l and b plot



## Gaussian for 170 < l < 180



## **Final Plots**



## **Final Plots**



## Conclusions

- South is redderHow constant
  - North

Part 3

South



| 1       | North (G-r) <sub>o</sub> | South (G-r) <sub>o</sub> | Difference |
|---------|--------------------------|--------------------------|------------|
| 60-75   | .29                      | .32                      | .03        |
| 75-90   | .28                      | .31                      | .03        |
| 90-105  | .29                      | •33                      | .04        |
| 105-120 | .29                      | •345                     | .055       |
| 120-135 | .285                     | •33                      | .045       |
| 135-150 | .30                      | .305                     | .005       |
| Average | .285                     | .323                     | .038       |
| Range   | .015                     | .04                      |            |

## Acknowledgements

 Widrow, Lawrence M., et al. "Galactoseismology: Discovery of Vertical Waves in the Galactic Disc." 
 The Astrophysical Journal Letters 750.2 (2012): 1-5. The Astrophysical Journal Letters. Web. 20 July 2012. <u>http://iopscience.iop.org/2041-</u> 8205/750/2/L41/pdf2041-8205\_750\_2\_L41.pdf.



- Brian Yanny
- Chris Stoughton
  - and his office
- George and Kristy
- Python
- SDSS III data
- Logger Pro 3.8.5.1



## **Discussion of Results/Implications**

## 1. Dust

- Not been properly accounted for
- Dust makes things seem farther away
  - Hidden dust on the bottom
  - Not comparing equal boxes
- 2. Different stellar population
  - Could have come from a satellite galaxy
    - w/higher Metallicity/
    - older population
    - Passed through bottom
  - Halo difference (16 kpc)

## Equations

•  $M - m = 5 \log (d / 10 pc)$ 

•  $M^2 = 40.2 (G-r)_0 + 3.879$ 



