

Double Pendulum

Ricardo Angeli Ryan Guinn

Ethan DeJongh Josh Kilmer Bob Ren

- · Normal pendultation are vary to predict, they follow very transper and predictable patterns.
- The first person to study the motion of a pendulum was Galileo in the 1500's.
- He discovered that the motion relied solely on the length and not the mass of the

Motion of a Pendulum

Motion of a Pendulum

- · A double pendulum is a pendulum with a second pendulum attached to the end of the first.
- · Double pendulums are virtually impossible to predict.
- This is because the bottom pendulum affects the motion of the top pendulum

Motion of a Double Adouble pendulum is a classic real-life Chaos theory due to its behavior.

- The aim of the project is to analyze the behavior of a double pendulum.
- · For this, we have constructed a double pendulum with magnetic encoders on each axles to read out the angles.
- · With these angles, we can feed the motion of the pendulum into our program and

The Project

The Double Pendulum

The Data AcquisitionySystem (Rröski)

The CompactRIO Chassis

Motion of a Double Pendulum

- · Our double pendulum computer program sports a wide array of features.
- We begin by recording pendulum runs, meaning we swing the pendulum for a certain number of trials and the recording program writes the angles in a file.
- · We can play back these files in our

The Program

- The playback program supports playing a virtually infinite amount of runs at the same time for easy analysis.
- · It generates over 15 different graphs displaying different sets of data.
- · Here are some of the more interesting ones:

The Program

The Program's Front Panel

The Unpredictable Run

Cumulative Angle Chart for the Unpredictable Run

The Predictable Run

Cumulative Angle Chart for the Predictable Run

Exponential Fit for Product of Standard Deviation Graphs

Top Standard Deviation

Donut Graph

