art Visualization Using ParaView

Keshav Kapoor (Naperville Central High School)
Dr. Adam Lyon (Fermi National Accelerator Laboratory)

Abstract

The purpose of this project is to create a real time visualization of the data that is produced from
the art event framework created by the Fermilab Scientific Computing division. to check the
geometry of the experiment as well as preparing art to be used with High Performance
Computing (HPC). To accomplish this task we will be using a visualization tool called ParaView
which was created by Kitware, Los Alamos National Lab, and Sandia National Lab. We already
have a pipeline between the art framework and paraview which allows us to display simple
objects as they are created. This pipeline was written in python and | will be converting it into
C++ as to keep it constant with the rest of the art framework. This will hopefully give

experiments a tool they can use to check their reconstruction algorithms and detector designs.

Introduction

Background

The fields in which this project takes place are High Energy Physics (HEP) and Supercomputing
visualization software. With High Energy Physics, we are specifically using art. This is an event
processing framework written in c++ which was created by Fermilab’s Scientific Computing
Division (Kutschke). In art there is an event loop, where a single event goes through the loop
and is modified and analyzed at different modules in the loop. There are five types of modules:
analyzer, producer, filter, source, and output (Kutschke). The analyzer inspects information in
the event, the producer can inspect and add information to the event, the filter can tell art to skip
modules for the event, the source reads events from a source, the output takes selected data
products and outputs them (Kutschke). Paraview is a supercomputing visualization software that
we will be using to visualize the event data. Paraview uses the Visualization Toolkit, a C++

toolkit to help create 3D visualizations, to create its visualizations(Ayachit). Paraview has a



graphical user interface for the user to manipulate the object created from the data line
changing color, viewing angles, and specularity. Paraview also has a feature called catalyst
which does In Situ visualization, where paraview does the visualization in the system and then
outputs images, instead of outputting data, this is due to the bottleneck created by the i/o,
making the system faster and more efficient if there were less reads/writes(Bauer, Geveci,

Schroeder).

Context of this work

This project will allow art to come with a 3D visualization tool, which can then be used to check
geometry on and display events. Previously, the visualization of the events were done by
individual scientists based on their own experiments, with this new addition scientists will not
have to create their own visualization tools. Over the summer we will be focusing on getting a
pipeline for the data between art and the visualization software Paraview while also keeping the
an art -like structure. This separation will also allow for a filtering of the data before using it to
make a grid. Later this software can be used by experiments to check their detector and

reconstruction algorithms.

Methods

General Outline of Program

My tasks included making the code to be more inline with the art framework. The visualization
data used to all be gotten and passed in an analyzer module. In art, data between modules
cannot be accessed with get functions. The data has to be put in something called a data
product, which is a class, that is then put inside the event. The data product holds data
produced and analyzed as the event passes through the modules. It generally only holds simple
data types like integers, doubles, or floats. This data product can then be accessed by other

modules to use the data inside it.



In a producer module, | first got data from each step in the tracks and put them in simple data
vectors, like int, double, and float vectors. These vectors are put into the data product which |
created. Later on in the event loop, an analyzer accesses the data product. After it is able to
access the data, the analyzer makes arrays of VTK data types with the data gotten from the
data product. It then takes the VTK data and puts them in grid which can be viewed in

ParaView, and passes the grid onto the Catalyst pipeline so that ParaView can get the data.

— Source Data
Module Product

ParaView Oufput Producer
\ dule Module

I
Catalyst

"

Filter Module
Data Product ~_—
" g _,_,_,-'-'"'-

Figure 1: A visual representation of the event loop showing how the data is transported through
the event loop. The red arrows represent the flow of the data. The data product is a part of the

event that gets passed on to every module.



Pictures




Future

There are many more aspects of the program which should be improved. The first item we want
to improve is the pipeline between art and ParaView. This pipeline currently is a service written
in python which a module can call. We want to make this service a part of an analyzer module
and write it in C++. In the near future, the experiment protoDUNE is looking into using this

software to visualize their simulations.

Acknowledgements

Fermilab is operated by Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the United States Department of Energy. QuarkNet is an
educational program sponsored by the National Science Foundation and the Department of

Energy whose aim is to support science education in schools by establishing a nationwide



network of science teachers. This work was supported by CRADA FRA-2014-0022-02
agreement between Fermi Research Alliance LLC and the University of Notre Dame for the

2015-16 QuarkNet summer program.

| would also like to thank Dr. Adam Lyon and Paul Russo for their help and guidance on this

project. | would not have been able to get through the C++ without Paul.

References

1. Ayachit, U. (2016, June 17). The ParaView Guide.

2. Bauer, A. C., Geveci, B., & Schroeder, W. (2015, February). The Catalyst User’s Guide
v2.0 ParaView 4.3.1 [User's guide to Catalyst].

3. Kutschke, R. (2016, July 18). Intensity Frontier Common Offline Documentation: Art
Workbook and Users Guide.



