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Abstract

The Muon G-2 Experiment at Fermi National Accelerator Laboratory is an attempt to
measure an anomaly in the magnetic moment of the Muon to new levels of accuracy . It seeks
to test the finer predictions of the Standard Model by measuring the contributions of QED, and
hadronic and weak interactions to the anomaly. Current efforts revolve around shaping and
mapping the magnetic field. This will decrease the deviation in measured positron energy,
increasing the accuracy of the calculated anomaly well past that of the Brookhaven National Lab
experiment (.7 ppm), to 140 ppb. This accuracy will allow for detailed calculations of effects on

the muon not predicted by SM theories, providing insight into hitherto unknown physics.
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electron mass. It has a rest frame lifetime of 2.2 microseconds. Discovered unexpectedly, it was
thought to be an excited state of the electron for some time, until confirmed to be a unique
particle. Like the electron, the muon is predicted the the Dirac equation to have a gyromagnetic
factor (or “g”) equal to 2. This is a coefficient in W, = g (e/2mc) B, which predicts how fast a
particle precesses (or rotates) in a magnetic (B) field. Many attempts to find the extent to which
the muon g differs from the value of 2 were kickstarted by the success of the electron g-2

experiment, which found an answer closer to 2.002. (Ozben 2003) Since then theories have



been developed and tested that fill out most of that discrepancy, but not all of it, as the BNL
experiment demonstrated. Even after all known Standard Model effects are taken into account,
as well as the systematic uncertainty, the result found at Brookhaven was 3 standard deviations
from the best predictions. This clearly means that prior to its decay the muon interacts with
forces or particles that exist outside of current theoretical frameworks. Quantifying exactly how

large an effect this has should enable and inform the fleshing out of new theories.
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The goal of my group this summer was to finish lamination of the ring
storage magnet poles around the time of the collaboration meeting, so @&
the ring, with a now nearly perfect field, could be transferred to the

beam group for testing and installation on the vacuum chambers. This

comprised the ordering, cleaning, cataloguing, and sorting of about
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become magnetic).This allows it to quickly adopt the applied field and amplify it in accordance

with its mass. By placing 8856 strips (plus gratings) over 72 poles (36 top and bottom) in 3 rows

of 41 per pole, reduction of the field variation to less than 25 ppm azimuthally, and .5 ppm

dipole moment red: full scan 48 blue: full lam scan 3

2 @ o ®©
8 & 8 &

IIH[[llllllllllllHNlH

g
T

g

g

e III|IH

g

Y
UV

".:\\i v_/\ /\"

L . i L

W

40 50 60 70 80 90

normal quadrupole red: full scan 48 blue: full lam scan 3

100 110
azimuth via laser tracker (deg)

20

o

! " | |
" rirst madfienc riea m3p, uct 18 2ufd

azimuthally averaged radially and
vertically, is expected. The field is
periodically measured using a
non-magnetic cart containing 25
NMR probes, reading on average
every .3 degrees. This data is
analysed and used to inform
corrections to the mass formulas, as
well as what methods/orientations of

placement and application of foils.

Data

The field has, as a result of our
laminations, improved considerably
thus far, and should continue to well
below our stated tolerances. The
BNL experiment ended with a

systematic uncertainty of 540 ppb, a

* variation of ~200 ppm azimuthally,

and less than 1 ppm azimuthally
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averaged. The goal of “shimming”
is to reduce those variations to 25
ppm azimuthally, .5 ppm

azimuthally, and help limit

systematic uncertainty to 140 ppb.
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Currently field is at 40 ppm for the

worst laminations, and well within 25 for the majority. Azimuthally averaged, especially for

higher order perturbations, the field is still outside of .5 ppm for the worse foils. Seen here

without gratings are some of the before and after variations in multipole effects, as well as early

and more recent field graphs.
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While laminating, we switched from foils hand-cut in the lab to foils
mass cut by the University of Washington with a laser cutter. During
this process the iron was heated enough to alter its magnetic
characteristics, thereby increasing the perturbation it caused. For 1Tmm
wide foils this was 36%. Once foils were 3.5mm, the effect was
reduced to less than 1%. This increase was accounted for in the
programs that calculated the foil distributions, and the effect has not

increased overall field variation. Similarly, for the gratings that cover the

stationery NMR (Nuclear Magnetic Resonance) probes, several

336 337 338 339 340 341 342 343 problems were encountered. Radially placed foils produced too large of
Azimuthal Position (deg)
a gradient near their edges, rendering data from the probes unuseable.
Once we switched to azimuthally laid down foils, this effect was neutralized, but the total
perturbation produced by our calculated gratings was 12% too large. We reduced the mass

accordingly, and the gratings currently appear to be performing as expected.
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