

Vacuum Considerations for Electron-Induced Desorption in the PXIE Absorber Test Stand

Presenter: Kerbie Reader Forest Ridge School of the Sacred Heart, Seattle, WA

Mentor Scientist: Alexander Shemyakin Fermi Accelerator Division

Project Overview: PIP-II_[1]

- Goals:
 - Prepare Fermi to "host a world-leading long baseline neutrino research program" \rightarrow LBNE
 - Replace Linac; Upgrade Booster, Recycler, Main Injector
 - Build a system with long-term upgrade flexibility

Project Overview: PXIE_[2]

- Goals:
 - High power continuous beam, bunch-by-bunch chopper
 - Allow different bunches of the same beam to be directed to different end users

Project Overview: Absorber

- Goal:
 - Design material and structure capable of absorbing sustained high power PXIE beam in vacuum

- Material: TZM (Molybdenum alloyed with Ti, Zr)_[3]
- Structure: angle, steps, aluminum plate, coolant, "lobes"

🛟 Fermilab

Test Stand Measurements

- Increase of Vacuum Pressure with Current today's focus
- Temperature of Thermocouples with Position
- Light Intensity of Beam
- Change in Temperature of Water Coolant

Test Stand Assembly

Why Do We Need Vacuum?

In Vacuum

🛟 Fermilab

How much vacuum?

Pressure ranges of each quality of vacuum in different units

Vacuum quality	Torr	Pa	Atmosphere
Atmospheric pressure	760	1.013×10 ⁺⁵	1
Low vacuum	760 to 25	1×10 ⁺⁵ to 3×10 ⁺³	1 to 0.03
Medium vacuum	25 to 1×10 ⁻³	3×10 ⁺³ to 1×10 ⁻¹	
High vacuum	1×10 ⁻³ to 1×10 ⁻⁹	1×10 ⁻¹ to 1×10 ⁻⁷	
Ultra high vacuum	1×10 ⁻⁹ to 1×10 ⁻¹²	1×10 ⁻⁷ to 1×10 ⁻¹⁰	
Extremely high vacuum	<1×10 ⁻¹²	<1×10 ⁻¹⁰	
Outer space	1×10 ⁻⁶ to <3×10 ⁻¹⁷	1×10 ⁻⁴ to < 3×10 ⁻¹⁵	
Perfect vacuum	0	0	0

Vacuum Pumps (turbo+scroll) **#**Fermilab

Turn on the electron beam!

‡ Fermilab

Meanwhile...

Monolayer of molecules (H₂) ADSORPTION molecules from air weakly bond to the surfaces in the vacuum

 ${\sim}10^{15}~atoms/cm^2$ in a monolayer on perfectly smooth $surface_{[4]}$

Electrons hit absorber surface **#Fermilab**

Molecules are Desorbed

‡ Fermilab

More Electrons = More Desorption **#Fermilab**

More Electrons = More Desorption **#Fermilab**

More Electrons = More Desorption **#Fermilab**

Pressure and Current

‡ Fermilab

•
$$PV = nRT$$
 OR $PV = N_m k_B T$
• $\therefore P \frac{V}{\Delta t} = \frac{N_m}{\Delta t} k_B T$
• $\therefore P = \frac{N_m}{S \cdot \Delta t} k_B T$
• $\therefore \Delta P = \frac{\Delta N_m}{S \cdot \Delta t} k_B T$
• $I = \frac{q}{\Delta t}$
• $q = e * N_e$
• $I = \frac{e * N_e}{\Delta t}$
• $\Delta I = \frac{e * \Delta N_e}{\Delta t}$
Current is a measure of the number of electrons hitting the surface!
• $\Delta I = \frac{e * \Delta N_e}{\Delta t}$

The First Beam: 07/03/2014

An increasing flow of electrons continuously increases desorbed molecules, ∴ Pressure ↑

A constant flow of electrons are incident on increasingly clean surfaces. Less desorption, ∴ Pressure ↓

This effect was most drastic when the beam was first turned on the absorber.

🛟 Fermilab

Desorption Decreases with e⁻ dose **#Fermilab**

Comparing $\frac{\Delta P}{\Delta I}$ with increasing electron dose shows that the absorber surface was significantly more clean after 7 × 10²² electrons.

Coefficient of Desorption

•
$$\frac{\Delta P}{\Delta I} = \frac{\Delta N_m}{\Delta N_e} \cdot \frac{k_B \cdot T}{e \cdot S} = 6 \times 10^{-7} \cdot \frac{\Delta N_m}{\Delta N_e} \left[\frac{Torr}{mA} \right]$$

Date	$\frac{dP}{dI} \left[\frac{\text{Torr}}{\text{mA}} \right]$	e ⁻
2014-07-03	1×10^{-7}	2×10^{19}
2014-07-03	3×10^{-8}	2×10^{20}
2014-07-07	4×10^{-8}	3×10^{20}
2014-07-08	1×10^{-8}	1×10^{21}
2014-07-09	6×10^{-9}	3×10^{21}
2014-07-14	3×10^{-9}	8×10^{21}
2014-07-15	3×10^{-9}	1×10^{22}
2014-07-16	3×10^{-10}	7×10^{22}
2014-07-17	2×10^{-10}	2×10^{23}

🛟 Fermilab

The number of molecules desorbed by the surface decreased by 90% with a dose of 10²¹ electrons.

Future design engineers may use this data to guide their choices (ie pump size) by knowing expected gas load from desorption.

Спасибо, Thank You, Merci, and Danke to:

Alexander Shemyakin, Curtis Baffes, Lionel Prost, Bruce Hanna, Harry Cheung, and Bjoern Penning for a fantastic opportunity this summer.

References

- [1] (2013) PIP-II White Paper: Proton Improvement Plan-II. Batavia, Illinois.
- [2] (2012) PXIE White Paper: Project X Front End R&D Program. Batavia, Illinois.
- [3] A. Shemyakin, C. Baffes (2014). Design and Testing of a Prototype Beam Absorber for the PXIE MEBT. Projext X Document 1259. Batavia, Illinois.
- [4] M. H. Hablanian (1997). High-Vacuum Technology. New York.
- [5] D.C. Giancoli (1984). Physics For Scientists and Engineers. New Jersey.