Inferring the Temperature of Bubble Chambers By Measuring the Speed of Sound

Madeline Bernstein

Mentor: Mike Crisler

Dark Matter

Dark Matter

"nonluminous material that is postulated to exist in space"

- Galaxy Rotation Curves
- Gravitational Lensing ("Bullet Cluster")
- Cosmic Microwave Background

Dark Matter Detection

- WIMPs
 - "Weakly interacting massive particles"
- Indirect Detection

• Direct Detection

Upper Limit (90% C.L.) is 2 x 10⁻⁴⁵ cm² for 55 GeV/c² WIMP

Bubble Chambers

- Super Heated Fluid
- Particle Interaction → Nuclear Recoil
- Dark Matter Detection?

Temperature Problem

- Temperature crucial parameter
 - Energy threshold for nuclear recoil
- Cannot insert temperature probe
- Measure temp of fluid around chamber
 - → Bigger chambers, more error

What do we do???

Standing Wave

Resonance

Resonance Frequency!

Piezoelectric microphones detect acoustic pressure of system

```
→ Temperature
→ Density
→ Speed of Sound
→ Resonance
Frequency
```

Temperature vs Speed of Sound in Water at 1 atm

Temperature vs Speed of Sound in Octafluoropropane at 1atm

$$f = \frac{v}{2 * pi} \sqrt{\left(\frac{\ell}{L_x}\right)^2 + \left(\frac{m}{L_y}\right)^2 + \left(\frac{n}{L_z}\right)^2}$$

f = resonance frequency v = speed of sound l,m,n = # half wavelengths in x,y,z direction

Lx,Ly,Lz = dimensions in x,y,z direction

Speed of Sound vs Peak Resonance Frequency of a 112 Three Dimensional Standing Wave in water

Scatter a result of shifting driver

This is clearly crooked

→ Correct by not changing the water during a test

Speed of Sound vs Peak Resonance Frequency of a 112 Three Dimensional Standing Wave in water

$$f = \frac{v}{2 * pi} \sqrt{\left(\frac{\ell}{L_x}\right)^2 + \left(\frac{m}{L_y}\right)^2 + \left(\frac{n}{L_z}\right)^2}$$

- Not perfectly rigid boundaries
 → Open top!
- Dimensions L_x , L_y , and **especially** L_z may vary
- Positions of **nodes** change

Speed of Sound vs Peak Resonance Frequency of a 112 Three Dimensional Standing Wave in water

Further Experimentation

- Change geometry, fluid
- Greater precision, account for systematic errors
- Generate frequencies in chamber

Personal Experience

- HUGE amount of independence
- Confidence!
 - To ask or not to ask

- How not to give up even when *nothing works*
 - ("Our code finally works! Oh, no wait, it doesn't work. Oh hey we fixed it! Oh nope now there's a new problem...")
- Bitten by the research bug?

Thank you!!!

- Mike Crisler
- Chris Stoughton, George Dzurickso, Ian Mcnair
- Eric Dahl, Pranjali Rathi, Brian Zhou
- Family, friends, teachers
- and...

Thank you for making this an unforgettable experience!