#### Quantitative Spectral Classification

Quarknet 2010 Astronomy Group

# The Project

- Develop a quantitative method of stellar classification.
  - Using the MKK system and standard stars as a guide.
  - Apply method to Sloan Digital Sky Survey data

# **Goals and Implications**

- Our goal for the summer:
  - Accurately classify Sloan Stars by hand
- Goals of the project
  - Develop a program that more accurately classifies stars than the current technology
  - Use that program to more accurately determine the distribution of hot and cold stars within galaxies.

#### William Wilson Morgan

And his System



Luv addition, the CN break at  $\lambda$  4215 has its greatest intensity (except in the carbon stars) in supergiants like 5 Cep. It is slightly weaker in 0 Her and weaker still in the ordinary giant 8 Aur.



The stars S Cep and O Her can be said to define the spectral type KI for their respective luminosity classes. Their absolute magnitudes are very uncertain; S Cep is probably around -4 or -5, while O Her is probably about a magnitude fainter. The absolute magnitude of 8 Aur is probably near to.5.

Cramer HL-Speed Special

#### From the Book

#### 31 K0

Spectral type is determined from the ratios  $\lambda\lambda$  4030–4034: $\lambda$  4300,  $\lambda$  4290: $\lambda$  4300, and  $H\delta$ : $\lambda$  4096. Luminosity differences are shown by the ratios  $\lambda$  4063: $\lambda$  4077,  $\lambda$  4071: $\lambda$  4077,  $\lambda$  4144: $\lambda$  4077, and by the intensity difference of the continuous spectrum on each side of  $\lambda$  4215.

#### 30 G8

The spectral type (except for the supergiants) is determined from the ratios  $\lambda$  4144: $H\delta$  and  $\lambda$  4096: $H\delta$  and the ratio of the blend at  $\lambda\lambda$  4030–4034 to the violet side of the G band. On the spectrograms used,  $H\delta$  appears to be stronger in dwarfs of this class than in giants and subgiants.

#### HR Diagram



#### Sloan Digital Sky Survey





And its System

#### Dark Sky Observatory



## Where does this fall?



The sector in green is the section of the spectrum Morgan used in his classification

То 900

The SDSS can analyze all of the yellow sector

#### **Equivalent Widths**



- Amplitude- distance between vertex and continuum
- FWHM- Full Width at Half Maximum

# Methods of Measuring Equivalent Widths

- Simple Excel Calculation
- More Complex Excel Template
  IRAF
- All three methods match up with about 10% error margin

# Tricks

- If continuum is known and line is near continuum, measuring by hand is fine.
- If line is asymmetrical, measure continuum and amplitude from higher side.
- Line should be symmetrical, so if not measure one side and double FWHM.

# Methods of Measuring Equivalent Widths

# Simple Excel Calculation More Complex Excel Template IRAF

 All three methods match up with about 10% error margin

## What is a template?

- A template is a program I made in excel which helps create a graph that matches the absorption line(s) of a spectrum and calculates the equivalent widths of those lines.
- Templates for matching 1, 2, and 3 absorption lines are available.

# When To Use a Template

- When edges of line are far below continuum
- When there are clear absorption lines on either side of the main line
- Especially when the half-maximum is above the edges

#### Synthetic vs. Real



# How To Use a Template

- Copy spectrum data into template file, it will be automatically graphed
- $\cdot$  Zoom in on desired line
- Plug in apparent characteristics, it will automatically graph a Gaussian curve with these characteristics in the same plot
- Adjust characteristics to match line(s)
- Record equivalent width of Gaussian curve, which is automatically calculated based on the previously entered characteristics



#### Deviation

- Graph separates at edges.
- Should do this, outside absorption lines not accounted for.



# **Degrees of Freedom**

- · What they are: ways to alter graph
- Too many leads to less accuracy
- Solutions:
  - Give all Gaussians same continuum
  - Give all Gaussians same FWHM
- Reduces from 12 to 8 parameters

# Methods of Measuring Equivalent Widths

- Simple Excel Calculation
- More Complex Excel Template
  IRAF
- All three methods match up with about 10% error margin



# SDSS's System

- System gives equivalent width of line and error.
- Error correlates with signal-noise ratio
- Enormous amount of data
  - Not every line can be measured
- Much of data has low signal-noise, resulting in inaccurate measurements
  - Can be solved by ignoring spectra with high error

# O and B stars

- Hottest Stars
  - O: > 30,000 K
  - B: 10,000 K
    to 30,000K
- Extremely
  Luminous
  - O: > 30,000 L
  - B: 25 to



RA=219.82350, DEC= 1.04746, MJD=51663, Plate= 307, Fiber=537



## Spectral Classification of O



"If the spectral types of the O stars are determined from the single ratio of the absorption lines He i 4471: He ii 4541, results accurate to a tenth of a class between O5 and O9 can be obtained"

# Spectral Classification of B Stars

- Two ratios
  - He I : K
  - K : Ti I + C II
- · He I: K is generally more useful.
  - MKK: "The line He i 4026 is weaker relative to K than in class B8."

 K: Ti I + CII is more useful for cooler subclasses.

#### He I: K



#### K : Ti I + C II



#### **Comparison of Ratios**

#### 'A' Stars

- · 1.4 to 2.1 solar masses
- 7,600° to 10,000° Kelvin surface temperature
- $\cdot$  Sirius is an A1V
- True color white, apparent color changes with red-shift

Class: DA2 Apparent diameter: 1° 25' 54,8" Surface temp: 25.200 K Radius: 0,00 Rsun Rotation period: 30,000 minutes

Speed: 0,00000 m/s

Follow Sirius B FOV: 6° 27' 38,5" (5,79×)





# Trends Confirmed

- 4385:4481 increases with subclass number to an extent
- 4103 decreases from A0 to A9
# Problems

- No trend beyond A3 for 4385:4481
- Barely any trend for 4103
- Only line measured by SDSS related to A stars is 4103

# Findings

 Ratios of absorption lines can be used to create an automated spectral classification system, but accuracy will be a problem, and some human supervision will be necessary.

# F stars

- OBAFGKM middle temperature
- · 6000 7500 Kelvin
- · Yellowish White
- 1 in 33 in neighborhood

•





# Classifying Spectral Type: Ratio



Standards

# Classifying Spectral Type:

•Not in MKK •Ratios

Standards

- · 4328: 4385 Ratio (average) 1.24
- · 4033: Hydrogen Delta Ratio 0.54
- · 4436: 4370 Ratio 1.92

•Tested with

- F9: Ratios *did* match
- F5: Ratios *did* match
- F2: Ratios *did not* match

SDSS

# Classifying Spectral Type: Other Factors

#### 24 F5

The G band is observed as a broad absorption with the violet part of the band somewhat stronger than the red edge. Fe I 4045 and  $\lambda$  4226 are very much weaker than H $\gamma$  and H $\delta$ .

Iron I Calcium I

## Classifying Spectral Type: Other Factors

#### 25 F6

The G band is slightly stronger than at class F5.



# Luminosity



At Strontium II: Iron I as the luminosity class increases, the equivalent width ratio decreases.

# Luminosity



At Strontium II: Iron I, as the luminosity class increases, the equivalent width ratio generally decreases

#### G Stars



Emily Setchell

# **Background Information**

- · Yellow stars
- 5000 to 6000 K
- Make up 7.7% of stars
- 10 billion years
- Neutral and ionized metals, especially calcium
- Our SUN!



The Mkk Book Important Lines for G Stars

- H🛛 = 4103
- H[] = 4342
- 4226 = Ca I
- -4045 = Fe I
- -4077 = Sr II
- -4144 = He I
- 4063
- 4096



# Classifying Each Spectral Type



### G0 and G2



#### G0



|         | 4077:4226 | 4077:4045 | 4077:H <b>I</b> * |
|---------|-----------|-----------|-------------------|
| Ib      | 0.84647   | 1.69581   | 0.69204           |
| III     | 0.79132   | 1.30447   | 0.48165           |
| IIIa0.7 | 7880      | 1.27613   | 0.44281           |
| V       | 0 90826   | 1 05421   | 0 46260           |

#### G2



|       | 4077:4226 | 4077:4045 |
|-------|-----------|-----------|
| Ib    | 0.74033   | 1.51287   |
| III C | 0.62918   | 0.68286   |
| V     | 0.75266   | 0.98220   |

## G5 and G8



#### 4096:HD

#### G5 and G8



G5 G8 4144:HI  $0.38713 \pm .11565$   $0.46733 \pm 0.09137$ 

#### **G**8



|     | 4045:4077 | 4063:4077 | 4144:4077 |
|-----|-----------|-----------|-----------|
| Ib  | 0.85870   | 1.12322   | 0.49186   |
| III | 0.86368   | 0.58018   | 0.75122   |
| V   | 2 50934   | 1 33102   | 1 57130   |



#### SDSS Data



G0G2G54045:H0.322770.170960.391590.148264226:H0.437980.1247970.526980.089624144:H0.754600.38826



#### K Stellar Classification

1

#### 54 Piscium



# Problems with light



#### 54 Piscium



#### 54 Piscium



# Results

| K0 Stars            |      | K2 Stars      |      |            | K3 Stars  | K5 Stars      |      |
|---------------------|------|---------------|------|------------|-----------|---------------|------|
| <b>Dwarf</b>        |      | Giant         |      | ]          | Dwarf     | <b>Dwarf</b>  |      |
| λλ 4030-4034:λ 4300 | 2.19 | λ 4290:λ 4300 | 6.57 | λ 4226:λ 4 | 4325 3.19 | λ 4226:λ 4325 | 4.52 |
| λ 4290:λ 4300       | 3.06 | λ 4226:λ 4325 | 2.78 | λ 4290:λ 4 | 6.75      | λ 4290:λ4299  | 4.78 |
| Ηδ:λ 4096           | 2.53 |               |      |            |           | λ 4383:λ 4406 | 2.89 |
| Eta Cyg             |      |               |      |            |           | Alp Tau       |      |
| Giant               |      |               |      |            |           | Giant         |      |
| λλ 4030–4034:λ 4300 | 5.03 |               |      |            |           | λ 4226:λ 4325 | 4.49 |
| λ 4290:λ 4300       | 6.75 |               |      |            |           | λ 4290:λ4299  | 3.6  |
| Ηδ:λ 4096           | 1.92 |               |      |            |           | λ 4383:λ 4406 | 3.12 |

# M Type Stars

- Coldest stars
- The black body curve is prominent in the nearinfrared range



## Spectral Type

•Determined by titanium oxide band intensity •TiO band 4900-5200 was used for this classification •Measurement area was from the prominences around 4950 and 5160 •OIII lines slightly disturb the left part of the band

## Spectral Type Results

- Results have a 5% error
- High noise in many cases
- Concentrated on M2 stars
- Two sets of data seem reliable, however, they are both around 37 Å

# Luminosity Type

- Differentiates
  between giants
  and dwarfs
- Not very good at specifically classifying giants

# Luminosity Type Results

- Obvious difference between giants and dwarfs
- Line 4045 (Fel) also changes with spectral type

# Luminosity Type



Photographic plates Morgan used

•

٠

٠

- 4376:4383:439 0 used to classify giants
- The lighter the line, the greater the absorption
  - Digital data gives similar results

# Luminosity Type – A Deductive Process

- · Luminosity lines often interact with each other
- · Hard to get good data in digital spectra
- $\cdot$   $\,$  M-stars cannot be classes VII or IV  $\,$
- Use ratio 4045:4077 to distinguish between giants/dwarfs
- Use ratios 4376:4383:4390 to distinguish between giants

# Findings

More data in the red wavelengths is needed An easier, efficient tool to calculate equivalent widths is needed Morgans' system needs broadening to included analysis of a wider wavelength band
## More Data, More Time

- National Optical Astronomy Observatory http://www.noao.edu/cflib/
- Standard Objects for Astronomy http://sofa.astro.utoledo.edu/SOFA/spectroscopy.html
- · STELIB spectrum
- http://www.ast/obs-mip.fr/users/leborgne/stelib/list\_index
- UVES spectrum

## Where do we go from here?

- · We have made valuable progress.
- More Standard Star Data
  - Working on a proposal for observing time to take spectra of more of Morgan's standards.
- Next summer at Quarknet
- Start developing software

## Acknowledgements

- Chris Stoughton
- · Richard Kron
- Brian Yanny
- · Jim Volk
- · Jim Brown
- · Drew Sobczak
- Fermilab education office and the Quarknet program